

LAr FCAL Upgrade Plans

F. Lanni Brookhaven National Laboratory

Outline

- •The Atlas Calorimeter System
- General Atlas LAr Upgrade organization and plans (phase-I and II)
 - Readout Electronics
 - Cryogenic Front-End for the HadronicEndcap calorimeter
 - Engineering Studies
- FCAL issues @ sLHC upgrade
- Options for a new FCAL
- Toward an FCAL Upgrade Construction Project

9/11/08 FL: LAr FCAL Upgrade - DOE/NSF JOG Review

Tile barrel
Front-End
Readout
(Phase-II)

LAr EM end-cap (EMEC)

LAr EM end-cap (EMEC)

Forward Calorimeter
(Phase-I)

Possible Hadronic
Enddag Calorimeter
(Phase-I)

LAr EM barrel

LAr forward calorimeter (FCAL)

9/11/08 FL: LAr FCAL Upgrade - DOE/NSF JOG Review

2

Readout Electronics Upgrade Plans

Radiation	Simulated Level	Safety Factors			Total	3 -years @
Туре		Simulation	Low Dose Rate	Lot Variations	Radiation Tolerance Criterion	sLHC
Total Ionizing Dose	5 kRad	3.5	5	2	175 kRad	525 kRad
Neutron Fluence	1.6 x 10 ¹² n/ cm ²	5	1	2	1.6 x 10 ¹³ n/ cm ²	4.8 x 10 ¹³ n/ cm ²
Single Event Upsets	7.7 x 10 ¹¹ h/ cm ²	5	1	2	7.7 x 10 ¹² h/ cm ²	2.3 x 10 ¹³ h/ cm ²

Phase-II upgrade needed because of radiation level issues of board components

- 1) Components can not replaced as the technology will not be available.
- 2) Limited numbers of spares available.
- Qualification for radiation tolerance is 10yrs at nominal luminosity.
- 4) Therefore replacement is required for sLHC..
- 5) May be replacement will be needed is failure rate is higher than expected?
- 6) Phase-II ...

DOE/NSF JOG Review

4

Readout Electronics Upgrade

EN

Current Implementation:

- •3 Gain Settings (x1,x10,x100)
- •Analog Pipeline (2.5µs)
- L1 receiver (100kHz max. trigger rate)
- Gain Selector mechanism and digitization upon receipt of the L1 signal

Baseline for sLHC:

- •2 Gain Settings?
- Pipeline off-detector. 40MSPS digitization
 - •Data throughput: 100 Gbps/board
 - Radiation hardened FPGA and data lossless compression (100->30Gbps)?
- Analog T&H?
- How much integration on a single ASIC?

- GaAs preamplifiers installed on detector
- Qualified for 10yrs operation at nominal luminosity
- R&D studies by MPI and German Universities to evaluate radiation tolerance above 10^34...
- …as well as alternative technologies (cryogenic SiGe processes)

 Also (TRIUMF) tooldesign to access the calorimeter wheels for replacing the PC boards that house preamplifiers

9/11/08

FL: LAr FCAL Upgrade - DOE/NSF JOG Review

-

/EN

The FCAL Project

BROOKHAVEN NATIONAL LABORATORY

 The original construction project was a collaborative effort between 4 funding agencies.

• U.S Contribution: ~3.3M USD

US Contributions (U. of Arizona resp.):

- Development and design (...novel readout geometry developed for the SSC GEM detector and adopted by Atlas in 1993)
- Deliverables:
 - FCAL1 (e.m. modules)
 - · HV distribution and summing boards
 - · Cold cables
 - · Share of responsibility of final assembly and installation @ CERN
 - Stewardship responsibility for optimal integration of the FCAL assembly into ATLAS, including calibration and software development
- J. Rutherfoord, U. of Arizona, was the LAr-FCAL project leader within the Atlas LAr collaboration during the whole construction phase.

0/11/

8

FCAL performance degradation

- Detector performance will deteriorate at luminosities above the nominal 10³⁴.
- The main issues are:
 - Space charge effects arising from slowly drifting positive ion build-up
 - Heating by dE/dx of the FCAL modules with possible consequent boiling of Argon
 - Significant drop in the HV distribution that generates the drifting electric field in the detector elements.
- In at least the latter case there is no enough margin at $3x10^{34}$ so the FCAL performance may degrade significantly.
- Calculations are based on MonteCarlo simulation of minimum bias events. There are uncertainties associated to the different generators
 - Data availability by end 2008/mid 2009 will allow more accurate estimates
- A complete assessment of the performance degradation has just begun and it is being pursued vigorously

9/11/08

FL: LAr FCAL Upgrade - DOE/NSF JOG Review

Q

Atlas - LAr Strategy

BROOKHAVEN NATIONAL LABORATORY

- The FCAL will not operate @ sLHC (Phase-II).
- The only possible upgrade is by the long shutdown (2016/2017)
- Need more studies to address criticality of the FCAL issues for Phase-I
 - Calculations are based on MC with significant variation between min. bias generators
 - Need to collect data (end of 2008/mid-late 2009)
- Scope of the project extends for several years
 - "Lessons" from the original construction project (design through installation onto the end-cap cryostat)
- Need to develop both options in parallel... STARTING NOW...
 - Detector R&D for the "warm"-option
 - Design and detailed engineering studies for a cold FCAL1 replacement as integral part of a construction project and of the decision making process
- Tradeoff between technology challenges vs. ease of installation/ integration inside the Atlas detector
- Decision and ready to start production in 2011

9/11/08 FL: LAr FCAL Upgrade - DOE/NSF JOG Review

Summary: FCAL Upgrade Goals and US Deliverables

- Maintain leadership role in Atlas for the Forward Calorimetry
 - Developing tools and all preparatory engineering studies to be ready to launch replacement
 - Defining detailed design of an upgraded "cold" FCAL1 detector
 - Request of a Phase-I construction project for a cold FCAL1 upgrade:
 - Engineering resources and manpower for design of a newly optimized FCAL1 module, new services (cooling) and a new HV distribution scheme
- In case a "cold" FCAL upgrade will be decided (end 2011):
 - Assume direct responsibility in construction/assembly of the FCAL1
 - Share responsibility during assembly and installation phases at CERN
 - Total: 51.1 FTE-yrs (2010-2018), 8.1M
 - See Howard's summary for detailed resource/manpower needs
- If the FCAL will be "warm" the US responsibilities and contributions have to be understood and clarified

1/08 FL: LAr ECAL Lingrade - DOE/NSE LOG Review

Backup Slides

9/11/08 FL: LAr FCAL Upgrade - DOE/NSF JOG Review

9/11/08

